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A procedure is suggested for the construction of chemical reaction networks. We 
define the kinetic communication as a transfer of atoms or atomic groups 
between two species and determine all the kinetic communications occurring in 
the possible mechanism of a complex chemical process. The set of kinetic 
communications is the basis of the communication matrices resulting in the 
complete network of the overall reaction. 

Limiting the consideration for certain types of kinetic communications we 
obtain the reaction subnetworks and selecting arbitrarily species among those 
participating in the possible mechanism we introduced the concept of the partial 
subnetworks which correspond to subsets of the complete network. 

By the simple analysis of the subnetworks it is easy to obtain the sequence 
network indicating the pathways via which the selected species are formed in the 
course of the overall process, by the transfer of chosen atoms or atomic groups. 
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1. Introduction 

New work has been published recently on the problem of rationalizing reaction 
mechanisms in a formal way. Sellers worked out a mathematical formalism for 
mechanisms using finitely generated Abelian groups [-1], which - though of a 
general character - if applied to complex chemical processes requires a rather 
wearisome mathematical treatment. Sinano~lu introduced a theory allowing all 
possible mechanisms to be figured out apriori and to be drawn as simple networks 
[2]. Thus the Sinano~lu theory which includes all the chemically important 
elementary reaction types is of much practical value especially when used for 
mechanisms up to 5-8 elementary processes. 
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In the present work we develop the methodology for chemical reactions with some 
possible mechanisms consisting of any number of elementary processes. This 
formalization would be of importanc e in 1) planning the experimental study of the 
reaction, 2) excluding certain network elements during experimental verification of 
the network resulting in reducing (or eventually extending) the possible mechanism, 
and 3) proper selection of the elementary processes included in the possible 
mechanism, the detailed study of which is essential concerning the overall reaction. 

With respect to degenerate branching chain reactions (such as hydrocarbon 
oxidation processes) reaction networks have been used earlier in the form of 
reaction schemes comprising sequence relations of the formation of the selected 
products. Their "construction", however, was based mainly on the intuition of the 
authors and not on the mathematical remodeling of the possible mechanism [-3-5]. 

Our first paper presents a method which allows drawing the different chemical 
reaction networks derived from the possible complex mechanism of the overall 
process in a quite simple way while the second paper shows the application of the 
procedure to two complex systems. 

2. Definitions 

Study of the complex process starts with compilation of the possible mechanism 
which, by definition, includes all possible elementary processes not excluded 
experimentally and collected from literature data as well as by using chemical 
evidence [-6, 7]. 

A single elementary event is referred to as an elementary step and the corresponding 
macroscopic transformation an elementary process governed by a cumulative 
statistical rate law. Two reversibly coupled elementary processes are called an 
elementary reaction. Consequently the possible mechanism is the set of elementary 
processes. The species participating in the possible mechanism are denoted by 
A1.. .  Aj . . .  Ap...  A N . 

Definition 1. There is direct kinetic communication between two species A i and Ap if, 
among the elementary processes of the possible mechanism there is at least one, the 
initial component and the product of which are Aj and A v, respectively, and Ap 
contains at least one atom ofAj. (Thus according to Definition 1, we do not consider 
an electron transfer between charged particles or energy transfer as a kinetic 
communication, although the definition can be easily extended to such phenomena.) 

Let a simple arrow denote the kinetic communication Aj--~ A v and, according to 
Definition 1 direct kinetic communication is a one-step communication. 

If the possible mechanism contains reversible elementary processes kinetic com- 
munication exists in both directions (e.g. elementary reaction Aj ~ Ap determines 
the following communications: Aj ~ Ap and Ap -+ A j). 

Definition 2. If we can choose m reactions from the possible mechanism in such a 
manner that they represent the following one-step communications: Aj--~ A j+ 1 
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---r . . . - - + A j + r n _  1 - -+Aj+ m then between Aj and A j +  m we have an m-step kinetic 
communication. 

The following remarks refer to the properties of  the many-step kinetic com- 
munications: 

Remark 1. The many-step kinetic communications reflect the sequence properties 
of the elementary processes included in the possible mechanism. 

Remark 2. In contrast to mathematical communications where an entity has no 
communication with itself, an Ap ~ A v kinetic communication might have a definite 
meaning. A good example is the following elementary process occurring in 
hydrocarbon oxidations: 

HROO" + H R O O H  ---, H R O O H  + "ROOH 

where HROO" and H R O O H  mean a peroxy radical and a hydroperoxide molecule, 
respectively. 

In this case we have a 

H R O O H  ~ H R O O H  

kinetic communication. 

Remark 3. A definite minimal step-number L can be attached to the elementary 
processes of any possible mechanism sufficient to reveal kinetic communications 
between any two species as an at most L-step communication. The number L 
denotes the characteristic step-number. Since the number of species is finite, it is 
obvious that the characteristic step-number cannot exceed the number of species, 
that is L ~< N. 

Based on the above concepts the complete reaction network can be defined. 

Definition 3. The entirety of  the at most L-step communications determined by the 
possible mechanism of a complex process is the complete reaction network. 

The one-step communications can be represented by a matrix called the kinetic 
communication matrix, denoted by K. 

Definition 4. The kinetic communication matrix is a matrix where thep ' th  element of  
the j ' t h  row, kjp = 1 if species Aj and Ap are in direct communication, otherwise 
k~p=0 ( / =  1, 2 . . . .  N; p = 1, 2 . . . .  N; independently). 

Communication matrices used in pure mathematics have similar characteristics [-8] 
with the sole difference that their main diagonal contains only 0, while - due to 
Remark 2 - the present matrix may also contain 1 in its main diagonal. Therefore, 
theorems proved for the former cannot be applied without further considerations. 

The kinetic communication matrices defined above have important  characteristics 
as to the network construction given by the following theorems. 

Theorem 1. I f  K is a one-step communication matrix, then sgn K 2 represents two- 
step communications between the species (that is, if kjp = 1, there is and if kjp = O, 
there is no two-step communication between species Aj and Ap). 
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The proof  of Theorem 1 will be given in the appendix. Based on this evidence it is 
obvious that Theorem 1 is valid also for the S ' th  power of the one-step 
communication matrix: 

Theorem 2. I f  K is a one-step communication matrix, then sign K S (s = 1, 2, 3 . . .  L) 
represents s-step communications. 

The Appendix verifies the following theorem: 
L 

Theorem 3. The matrix-sum K ' =  sgn Y', K S represents the entirety of  the at most 
L-step kinetic communications, s= 1 

Thus it can be seen that while K represents one-step communications, the matrix 
sum K '  corresponds to the network defined in Definition 3. The latter, naturally, 
does not contain more information than K but has certain practical advantages in 
constructing the specific networks discussed later. 

The communication matrices can be used in a more descriptive way, represented 
graphically where the numbers "1"  in the matrix correspond to directed arrows. 
Unfortunately, in the case of "big" possible mechanisms the graphic interpretation 
is pointless, since it becomes too immense. 

In order to illustrate the construction of the different matrices we take a very 
simplified "mechanism structure" of three elementary processes where the cor- 
responding A, B and C letters can be easily replaced by others, more realistic 
chemically (in fact, this we intend to do in Part  II), without an undue change in the 
mechanism structure. 

AB2 + C2 -~ AB + BC2 

AB2 + BC2 --+ AB + B2C 2 

AB + C2 --+ ABC2 

Here A, B, and C stand for atoms or atomic groups. I f  these processes are considered 
as a possible mechanism of a certain overall reaction, the corresponding one-step 
kinetic communications are: 

AB 2 ~ AB C2 ~ BC2 

AB2 -+ BC2 AB --+ ABC2 

A B  2 , "  B 2 C  2 C 2 - +  A B C  2 

B C  2 --~ B 2 C  2 

The respective two-step communications are: 

A B  2 --~ B 2 C  2 

C 2 ~ B 2 C  2 

ABe -+ ABC 2 

while the one-step communication matrix is: 
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AB2 

AB 

C2 

BC2 

B2C2 

ABC 2 

AB 2 AB C2 BC2 B2C2 ABC2 

0 1 0 1 1 0 

0 0 0 0 0 1 

0 0 0 1 0 1 

0 0 0 0 1 0 

0 0 0 0 0 0 

0 0 0 0 0 0 

= K  

According to Definition 3 the communication matrix defines unambiguously the 
graph and thus further on the "graph" and "network" can be used as synonymic 
expressions. Consequently, numbers 1 in the matrix can be represented by directed 
arrows as shown 'in Fig. 1. 

_--- ABC 2 

AB 2 . . . . . . . . . . .  ---~ 

- -  C 2 ~ B 2 C 2 F i g .  1. 

The dotted lines in Fig. 1 represent two-step communications according to the 
sgn K 2 matrix, though - as can be seen from Fig. 1 - these do not increase the 
amount of information since the precursor-product relations are already given by 
the one-step communications. 

Practically, for real complex systems, the following further aspects should be taken 
into account: 

a) Certain elements of the species-space of the possible mechanism are only 
hypothetic, their analytical determination is not always possible. 

b) The experimental procedures allow observation of pathways of only certain 
atoms or atomic groups. 

With respect to a) and b), Definition 3 is of excessively general character and thus the 
complete reaction network lacks significance. Its application to real systems requires 
more specific networks. These can be achieved by taking into account that 

a) the number of the different types of atoms participating in a complex process 
is finite 

b) the communication of two species differs essentially depending on the atoms 
or atomic groups realizing it (e.g. in the elementary process RH 2 + 02 --~ HR" 
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+ HO2 - where RH 2 means a hydrocarbon molecule - a kinetic com- 
munication RH 2 ~ HO2 exists with respect to the hydrogen atom, but there 
is no communication with respect to the carbon skeleton). 

In order to distinguish the type of kinetic communication we introduce the "table of 
atomic indices"; 

1. Based on the possible mechanism we determine the number of atoms or atomic 
groups n participating in the kinetic communications and choose an arbitrary 
succession of them: T1, T2. �9 T,  where the T's stand for the chemical symbols of the 
atoms or atomic groups. 

2. We construct a table the rows and columns of which contain the species in 
identical succession. 

3. In each square belonging to the j ' th  row andp ' th  column we write n indices in the 
form: t J1 p, t~P,.., ti p as follows: ti p = 1 (i = 1, 2, 3 . . . .  n), if the kinetic communication 
between Aj and Ap is realized by the atom or atomic group T i, otherwise ti p = 0 (j, p 
= 1, 2 . . . .  N, independently). For  a given square i goes from 1 to n. 

It is obvious that if in matrix K, kjp is 1, then at least one element of the indices ti p, 
ti  p . . . .  t, jp is 1 and ifkjp = 0, each element of the indices must be zero. The table of the 
atomic indices allows construction of the reaction subnetworks. 

Definition 5. The entirety of one, two- , . . ,  many-step kinetic communications 
realized by atoms or atomic groups Ti is the reaction subnetwork generated by the 
atom (or atomic group) Ti. 

The number of subnetworks is obviously n. The subnetwork belonging to T i 
represents the pathway of the atom (or atomic group) T~ via the different species 
specified by the possible mechanism. 

The one-step subnetwork generated by T~ can be represented by a communication 
matrix K(Tg) constructed in the following manner: 

a) Using a succession of species chosen arbitrarily we produce a matrix the 
elements of which are the numbers tle. 

b) We obtain K(Ti) from this matrix abandoning those rows and columns which 
correspond to species not containing atoms (or atomic groups) Ti. 

The reaction subnetwork according to Definition 5 is represented by the matrix sum 
Li 

K'(Ti )=sgn  ~ KS(T~), where L i means the characteristic step-number of the 
s = l  

subnetwork generated by the atom (or atomic group) Ti, that is, Theorems 1, 2 and 3 
are valid also for K(Ti). 

Some of the general properties of the kinetic communication matrices will be 
described in the Appendix. 

Even more importance can be attributed to the specific subnetworks derived from 
the reaction subnetworks especially concerning the planning of the experimental 
work. 

Such specific subnetwork could comprise the pathways of a given atom (or atomic 
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group) via the selected species. Selection of the species varies depending on the 
purpose of the investigations (e.g. stable components; identifiable compounds, 
etc . . . .  ). 

The specific subnetwork produced for the selected species is the partial network. Its 
communication matrix is the minor-matrix of K(T~) preserving the rows and 
columns which correspond to the selected species. A graphical representation of a 
simple partial network is given in Fig. 2. 

A 3 

AI 1 ~ A2 Fig. 2. 

This means that a given atom is transferred from species Aa to A 3 and to A 2 and 
from A2 t o  A 3. (It should be noted that in the course of constructing the partial 
network from its subnetwork analysis of the one-, two-, . . .  L-step communications 
yields information on the species that take part in the transfer, but have not been 
selected to follow.) 

A basic insufficiency of the above formalization lies in the fact e.g. that it does not 
enable us to decide whether transfer of the atom T~ via route 3 can be realized 
without participation of the species A 2 o r  not? In order to answer this problem 
further analysis is required: 

a) We analyse the one-step subnetwork generated by T~ (that is the K(T~) 
communication matrix which contains all the species), or 

b) We omit the row and the column of species A 2 in the one-step K(T0 matrix 
and construct a matrix sum K'(TI) preserving the rows and columns 
corresponding to the species selected. If  this "defective" partial subnetwork 
preserves arrow 3 (see Fig. 2), then Ti is transferred from A1 to A 3 without 
the intermediate participation of A 2. 

Production of the partial network for the species selected and its specification 
according to a) or b) leads to the sequence network. 

1. The sequence network describes the possible pathways of the atom or atomic 
group Ti via selected species. 
2. The sequence network (or the directed arrows in the graphic interpretation) 
represents definite sets of kinetic communications generated by the possible 
mechanism. 
3. The sequence network informs us about those selected species which participate 
necessarily in the transfer of the atom or atomic group Ti between the species 
selected along the given pathway. 

The sequence networks facilitate planning the experimental work and its evaluation 
in order to reduce the possible mechanism tbwards the probable mechanism. 
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Appendix 

1. Evidence of Theorem 1 

Evidence of Theorem 1, according to which if K is a one-step communication 
matrix, then sgn K 2 is the corresponding two-step communication matrix. 

I f  E = sgn K 2 and K =  ( k i j ) N , N  then the element of  matrix E in the i ' th row of the j ' t h  
column will be: 

e~ = sgn(k~k~ + k i z k z j  + . . .  + kiNkNj ) (1) 

The members in the brackets are not zero unless any of the multiplicators is zero. If, 
however k~ = 1, species A~ has a one-step kinetic communication with A 1 and 
similarly if kl j  = 1 species A~ has a one-step kinetic communication with Aj. This 
means that A ~  A 1 and A 1 ~  Aj. Consequently if k~ -k~j~0,  there exists an 
A ~ A j  two-step communication. Since the brackets of the expression (1) 
cannot contain a negative member,  the signum of the sum is 1 only if at least one 
member  differs f rom zero and it equals 0 only if each member  is zero, that is, eij = 1, if 
communication A~ ~ Aj is a two-step communication and e~j = 0 if there is no two- 
step communicat ion between A~ and Aj at all. 

2. Evidence of Theorem 3 

The sum K 1 = sgn ~ K s gives the entirety of  L-step kinetic communications. Let us 
discuss t h e j ' t h  element of the i ' th row in the K =  (k~)U,N matrix. It is evident that 

k~j = sgn(k~j, 1 + k~j, 2 -~- ' " " -]- k i j ,  s -'1- " " " -[- k i j ,  L) 

where k~j, ~ is t he j ' t h  element of  the i ' th row in the one-step communication matrix 
raised to the power s (in other words it is the corresponding element of the s-step 
matrix). Since we have only positive members in the brackets k~j = 0 only in case all 
members are zero, that is, if among species A~ and Aj there is no communication 
whatsoever, neither one-, nor  two-, or L-step communication. Furthermore k~ = 1 if 
at least one member  differs from zero and this means that between A~ and A~ there is 
a certain-step communication. Thus the matrix-sum reflects, indeed, the entirety of  
the at most L-step communications. 

3. Some Properties of the Kinetic Communication matrices 

3.1. 

The characteristic step-number described in Remark  3 can easily be determined for 
any kinetic communication matrix. Raised to higher powers and summed the one- 
step kinetic communication matrices may offer two possibilities: 

a) Either the (L + 1)'th power of the one-step communication matrix will be a O 
matrix;  
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b) or the sum of the matrices raised to higher powers remains invariant after the 
L ' th  power, that is: 

sgn [s__~ 1 KSl :sgn [i~i KS] 

3.2. 

I f  the communication matrix-sum representing the complete reaction network has a 
row with exclusively zero-elements, this shows that the species corresponding to this 
row does not participate as a reactant in any of the elementary processes included in 
the possible mechanism. 

The same for a column indicates that the corresponding species is not formed in any 
of the elementary processes included in the possible mechanism (this might be true 
for an initial substrate which is not reforming in any elementary process). 
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